
Lecture 32

Applications to Area, Arc length, Volume and Surface area

1 Area

Suppose f(x) ≥ 0 on [a, b]. Then it is clear from the definition of Definite integral that the area

under the curve y = f(x) can be approximated by Riemann sums. i.e.,

A ∼=
n∑
k=1

f(ξi)(xi − xi−1)→
∫ b

a
f(x)dx as n→∞.

Similarly, the area bounded by the curves y = f(x) and y = g(x) where f(x) ≥ g(x) on [a, b] is

A =

∫ b

a
(f(x)− g(x))dx.

Problem 1.0.1. Find the area bounded by y = x2 and y2 = x

Solution: The curves interest at x = 0, 1. The upper curve is y2 = x and lower curve is

y2 = x. So by the above formula

A =

∫ 1

0
(
√
x− x2)dx =

2

3
− 1

3
=

1

3

One can also find by integrating along y: A =

∫ 1

0
(
√
y − y2)dy =

1

3
.

Polar coordinates

A point (x, y) on the xy-plane is assigned polar coordinates (r, θ) if the point is at a distance

r =
√
x2 + y2 from the origin on the ray at an angle θ with positive x-axis. We allow r negative

with convention: (−r, θ) = (r, θ+π). Each point on the plane has infinitely many representations

in polar form, for example (1, 0) is at a distance of 1 units from the origin on the x-axis. So it

can be represented in polar form also as (r, θ) = (1, 0). Also it is same as (1, 2nπ), n ∈ N and

(−1, π). Each point (r, θ) is same as (r, θ + 2nπ) for all n ∈ N.

Example 1.0.1. The point (2, π/6) can also be represented by (−2, 5π
6 ) and (−2, 7π

6 )

Relation with cartesian coordinates:

We often use the following relations:

1. Given the polar coordinates (rθ), we can write the cartesian coordinates using x = r cos θ,

and y = r sin θ.

2. Given the cartesian coordinates (x, y), we can write polar coordinates using r =
√
x2 + y2,

and θ = tan−1( yx)
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Circles and Straight lines:

1. The circle x2 + y2 = a2 in cartesian coordinates, using (1) above, r2 cos2 θ+ r2 sin2 θ = a2

which is r = a.

2. The circle (x − a)2 + y2 = a2 =⇒ x2 + y2 − 2ax = 0, again by (1) above we get

r2 − 2ar cos θ = 0 =⇒ r = 2a cos θ.

3. The circle x2 + (y − a)2 = a2 =⇒ x2 + y2 − 2ay = 0, again by (1) above we get

r2 − 2ar sin θ = 0 =⇒ r = 2a sin θ.

4. The straight line y = mx is θ = tan−1m

5. The straight line x = a is r = a sec θ and y = b is r = b csc θ.

Symmetry in polar coordinates: The symmetry of the graph of the function in polar coor-

dinates helps one to plot/trace the graph. There are three types of symmetry principles.

1. For (r, θ) on the graph, suppose (r,−θ) is also on the graph. Then the graph is symmetric

about x− axis.

2. For (r, θ) on the graph, suppose (r, π−θ) is also on the graph. Then the graph is symmetric

about y- axis.

3. For (r, θ) on the graph, suppose (r, π+θ) is also on the graph. Then the graph is symmetric

about the origin.

Examples 1.0.2. 1. (leminiscate): Consider the function r2 = cos 2θ. If (r, θ) is on the

graph, then r2 = cos 2(−θ) = cos 2θ implies (r,−θ) is also on the graph. So the graph is

symmetric about x− axis.

Again, r2 = cos 2(π − θ) = cos(2π − 2θ) = cos 2θ implies (r, π + θ) is also on the graph.

Therefore, graph is symmetric about y-axis.

We can also see that (r, π + θ) is also on the graph. So the graph is also symmetric about

the origin.

Hence it is enough to trace the curve in the first quadrant. Now since r2 ≥ 0, the domain

of θ in the first quadrant is [−π
4 ,

π
4 ]. Also one can see by the derivative test that θ = 0 is

a point of local maxima(see figure 1).

2. (Cardioid): Consider the function r = 1 − cos θ. Then if (r, θ) ∈ graph =⇒ (r,−θ) ∈
graph. So the graph is symmetric with respect to x− axis. So it is enough to trace the

curve for 0 ≤ θ ≤ π. Again by derivative test we see that θ = 0 is a point of minimum

and θ = π is point of maximum(see figure 2).
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Area in polar coordinates: Let a region be bounded by the rays θ = α and θ = β and the

curve r = f(θ). We approximate the region with n non-overlapping circular sectors based on

the partition P of angle θ ∈ [α, β]. The typical sector has radius rk = f(θk) and central angle

of radian measure ∆θk. Its area is ∆θk
2π times the area of a circle rk. i.e.,

Ak =
1

2
r2
k∆θk =

1

2
f(θk)

2∆θk

The area of the region is approximately
∑n

k=1Ak. Taking n→∞ so that ‖P‖ → 0, we get

A =

∫ β

α

1

2
f(θ)2dθ =

1

2

∫ β

α
r2dθ.

Problem 1.0.2. Find the area of the region enclosed by the cardioid r = 2(1− cos θ).
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Solution: From the graph discussed above, the range of θ is from 0 to 2π. Therefore, the area

is

A =
1

2

∫ 2π

0
r2dθ =

∫ 2π

0
(3 + cos 2θ − 4 cos θ)dθ = 6π.

2 Arc length

Consider a curve defined by y = f(x) between x = a and x = b. For example y = sinx

between x = 0 and π. The length of this curve can be approximated by sum of lengths of

straight lines connecting (0, 0) → (π/4, sin(π/4)) → (π/2, sin(π/2)) → (π, 0). The arc length s

is approximately √
(
π

4
)2 + (

1√
2

)2 +

√
π

4
)2 + (1− 1√

2
)2 +

√
(
π

2
)2 + 1.

This approximation becomes better and better as we refine the partition P = {0, π/4, π/2, π}.
For a given curve defined by function y = f(x) between x = a, b, we consider the partition

P = {a = x0, x1, x2, ....xk−1, xk, ...xn = b}. Then the length of this curve may be approximated

by the formula

s ∼
n∑
i=1

√
(xi − xi−1)2 + (f(xi) + f(xi−1))2

=

n∑
i=1

√
1 +

(
f(xi)− f(xi−1)

xi − xi−1

)2

(xi − xi−1)

→
∫ b

a

√
1 + (f ′(x))2dx as n→∞

The following two formulas are used for finding the Arc length or length of curve:

1. For a function y = f(x) between x = a and x = b

s =

∫ b

a

√
1 +

(
df

dx

)2

dx.

2. For a function x = f(y) between y = c and y = d

s =

∫ d

c

√
1 +

(
df

dy

)2

dy.

Parametric form: Suppose if an arc is defined in the parametric form x = x(t), y = y(t) be-

tween t = T1 and t = T2. Then we note from above approximation, that s may be approximated
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by taking the partition P = {T1 = t0, t1, ...., tn = T2} and

s ∼
n∑
i=1

√(
xi − xi−1

ti − ti−1

)2

+

(
yi − yi−1

ti − ti−1

)2

(ti − ti−1)

→
∫ T2

T1

√
(x′(t))2 + (y′(t))2 dt as n→∞.

Problem 2.0.1. Find the arc length of the curve defined by x = 2 cos2 θ, y = 2 cos θ sin θ ,

0 ≤ θ ≤ π.

Solution: This curve is a circle with radius 1 at (1, 0). So the answer should be 2π. Applying

formula

s =

∫ π

0

√
x′(θ)2 + y′(θ)2 dθ = 2

∫ π

0

√
(2 cos θ sin θ)2 + (cos2 θ − sin2 θ)2 dθ

=2

∫ π

0

√
cos4 θ + 2 cos2 θ sin2 θ + sin4 θ dθ = 2π

Problem 2.0.2. Find the arc length of an arc of x
2
3 + y

2
3 = 1.

Solution: Take the parametrization: x = cos3 t, y = sin3 t, 0 ≤ t ≤ π
2 . Then(

dx

dt

)2

+

(
dy

dt

)2

= 9 cos2 t sin2 t.

Hence the arc length is

l = 3

∫ π
2

0
cos t sin t dt =

3

2

Problem 2.0.3. Find the approximate value of the length of ellipse x = a cos t, y = b sin t, 0 ≤
t ≤ 2π when a = 1, e = 1/2.

Solution: By the arc length formula,

l = 4a

∫ π/2

0

√
1− e2 cos2 tdt

where e is ellipse’s eccentricity. This integral is non-elementary except when e = 0 or 1. The

integrals in this form are called elliptic integrals. We can use Trapezoidal rule to evaluate the

value when a = 1 and e = 1/2. The answer with n = 10 is l = 5.870.

Suppose the curve is given in polar form r = f(θ), α ≤ θ ≤ β. Then by taking the

parametrization x = r cos θ = f(θ) cos θ and y = r sin θ = f(θ) sin θ with θ ∈ [α, β], we get

dx

dθ
= f ′(θ) cos θ − f(θ) sin θ,

dy

dθ
= f ′(θ) sin θ + f(θ) cos θ.
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Hence the arc length is

l =

∫ β

α

√
f2(θ) + (f ′)2(θ)dθ.

Application to Work done

Suppose the force f(x) depends on position x is along a straight line from x = a to x = b. Let

n ∈ N, ∆x = b−a
n and xi = a+ i∆x for i = 1, 2, ..., n. Then the work done in moving a particle

under the force f(x) from xk−1 to xk is approximately Wk = f(xk)∆x. The total work done (in

moving from a to b) approximately is W ∼
∑n

i=1 f(x∗k)∆x, x
∗
k ∈ [xk−1, xk]. Taking n → ∞ we

get the total work done as W =
∫ b
a f(x)dx.

Example: Find the work required to compress a spring from its natural length of 1 foot to a

length of 0.75 foot if the force constant is k = 16 kg/foot.

Solution: Hooks law ways that the force it takes to stretch or compress a spring x length nits

from its natural length is proportional to x. i.e.,F = kx, k is constant measured in force units

per unit length.

Suppose the given springs is placed on the x− axis. It is fixed at x = 1 and movable end at

the origin. From the above formula, the force required to compress the spring from 0 to x with

the formula F = 16x. To compress the spring from 0 to 0.25 ft, the force must increase from

F (0) = 0 to F (0.25) = 16× 0.25 = 4 foot-kg. Therefore, the work done by F over this interval

is

W =

∫ 0.25

0
16xdx = 0.5 ft− kg.
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Lecture 33

3 Volume of symmetrical objects

Method of Slicing:

Consider a solid lying alongside some interval [a, b] of the x-axis. For each x let A(x) be the area

of the cross section (of the solid) obtained by cutting it with a plane perpendicular to the x-axis

at x. We divide the interval into n subintervals [xi−1, xi]. The planes that are perpendicular

to the x-axis at the points x0, x1, x2, ..., xn divide the solid into n slices. If the cross section

between [xi−1, xi] changes ”little bit” along the that subinterval, then it can be approximated

by a cylinder of height xi − xi−1 with base A(x∗i ), x
∗
i ∈ [xi−1, xi]. So the volume of the slice is

Vi = A(x∗i )(xi − xi−1). Then the volume of the solid can be approximated as

V ≈
n∑
i=1

Vi =
n∑
i=1

A(x∗i )(xi − xi−1)→
∫ b

a
A(x)dx

as n→∞. Now this can be done along any axis, say y-axis. In this case we get the formula:

V =

∫ b

a
A(y)dy.

Solid of Revolution: Consider the area between the function y = f(x), x ∈ [a, b] and x-axis.

By revolving this area along x− axis, we obtain a solid which is called ”solid of revolution”. It

is easy to see that for this solid, the cross section is disc of radius f(x) and the area of cross

section A(x) is equal to π[f(x)]2. Hence the volume is

V =

∫ b

a
A(x)dx = π

∫ b

a
f2(x)dx.

For example, take a cone of radius r and height h. Then this cone can be obtained by revolving

y = rx
h about x− axis between x = 0, h. Then the volume is

V = π

∫ h

0

r2x2

h2
dx =

πr2h

3
.

Suppose the area revolved is bounded by two curves y = f(x) ≥ 0 and y = g(x) ≥ 0, with

f(x) ≥ g(x). Then each cross section looks like washer with outer radius r1(x) = f(x) and inner

radius r2(x) = g(x). The area of the cross section is π(f2(x)− g2(x)). The volume of the solid

is

V = π

∫ b

a
(r2

1 − r2
2)(x)dx = π

∫ b

a
(f2(x)− g2(x))dx.
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If the revolution is performed about y axis. Then

V = π

∫ b

a
(f2(y)− g2(y))dy

Example 3.0.1. The volume of the solid obtained by revolving the area bounded by y = x2 and

y =
√
x about the x− axis.

Solution: First we solve these two equation to find the interval of integration. Easy to see that

(real) solution of y = x2, y =
√
x is x = 0, 1. Next we can see that y =

√
x is above y = x2 in

this interval. Hence by above formula, the required Volume is

V = π

∫ 1

0
(x− x4)dx =

3π

10
.

Volume by cylindrical shells:

A cylindrical shell is the region between two concentric cylinders of same height h. It is something

like top portion of ”Well” above earth surface. Let r1 be the radius of outer cylinder and r2 be
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that of inner cylinder. Then the volume of this shell is

V = π(r2
1 − r2

2)h = 2πrath,

where ra is the average radius (r1 + r2)/2 and t is thickness of shell.

Consider the solid generated by revolving y = f(x), a ≤ x ≤ b around the y-axis. We divide the

interval [a, b] into n subintervals [xi−1, xi]. The volume V of the solid may be approximated by

the sum of the volumes Vi of the shells between [xi−1, xi]. Each shell is approximately cylindrical.

Its height is f(x∗i ), where x∗i = (xi−1 + xi)/2, the mid point. Its thickness is (xi − xi−1)/2. Its

average radius is x∗i . Hence its volume is

V ≈
n∑
i=1

Vi =
n∑
i=1

2πx∗i f(x∗i )(xi − xi−1)→ 2π

∫ b

a
xf(x)dx as n→∞.

If the region is revolved about the x axis, then

V =

∫ b

a
2πyf(y)dy.

Suppose the solid is obtained by revolving(about y axis) the area between two curves y = f(x)

and y = g(x) with f(x) ≥ g(x). Then the shell height will be f(x∗i )− g(xi)
∗). Hence the volume

will be given by

V = 2π

∫ b

a
x(f(x)− g(x))dx.

Example: Find the volume obtained by revolving the area bounded by y = 2x2−x3 and y = 0

about y axis.

Solution: The points of intersection of y = 0 and y = 2x− x3 are x = 0, 2. Height of the shell
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is f(x) = 2x2 − x3. So the volume is

V =

∫ 2

0
2πxf(x) = 2π

∫ 2

0
(2x3 − x4) =

16π

5
.

If we revolve the area about Arbitrary line parallel to axis , say x = c. Then the radius of the

shell be x− c (or c− x whichever is positive) instead of x. So the volume in this case is

V =

∫ b

a
2π(x− c)(f(x)− g(x))dx.

Similarly, if the region is revolved about x = d, then

V =

∫ b

a
2π(y − d)(f(y)− g(y))dy.

Problem 3.0.1. Find the volume of the solid obtained by rotating the region bounded by y = 0

and y = x− x2 about x = 2.

Solution: The points of intersection are 0 and 1. So the radius is 2 − x and height is x − x2.

Hence the volume is

V =

∫ 1

0
2π(2− x)(x− x2)dx = 2π

∫ 1

0
(x3 − 3x2 + 2x)dx =

π

2
.

Surface area of solids of revolution
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Consider an object obtained by revolving a curve y = f(x), a ≤ x ≤ b about x-axis. We assume

that f is differentiable and f ′ is integrable. We find the surface area of this by approximating

the surface by cylinders having the radius r1 on one end and r2 at the other end with lateral

height l. The surface area of such cylinder is 2π r1+r2
2 l. Now we divided the interval into sub-

intervals [xi−1, xi]. Let L be the line segment connecting f(xi−1) and f(xi). Consider the small

cylinders with radii r1 = f(xi) and r2 = f(xi−1). Then the surface area of this cylinder is

Si = 2π f(xi)+f(xi−1)
2 |L|, where |L| is the length of line segment touching f(xi−1) and f(xi) .

We note as in arc length, |L| is

√
1 +

(
f(xi−1)−f(xi)

xi−xi−1

)2
(xi − xi−1). Hence applying mean value

theorem,

S ≈
n∑
i=1

2π
f(xi) + f(xi−1)

2
|L|

= 2π
n∑
i=1

f(xi) + f(xi−1)

2

√
1 +

(
f(xi−1)− f(xi)

xi − xi−1

)2

(xi − xi−1)

= 2π
n∑
i=1

f(xi) + f(xi−1)

2

√
1 + [f ′(x∗i )]

2(xi − xi−1), x∗i ∈ [xi−1, xi]

→ 2π

∫ b

a
f(x)

√
1 + (f ′(x))2dx.

Problem 3.0.2. Find the surface area of the solid obtained by revolving the curve y =
√

4− x2,−1 ≤
x ≤ 1 about x-axis.

Solution: This is the portion of the circle x2 + y2 = 4 between [−1, 1].

S = 2π

∫ b

a
f(x)

√
1 + (f ′(x))2dx

= 2π

∫ 1

−1

√
4− x2

√
1 +

x2

4− x2
dx

= 2π

∫ 1

−1
dx = 4π

If the curve is described as x = g(y), then we have:

S = 2π

∫ b

a
y
√

1 + g′(y)2dy

Also, if the rotation is about the y-axis, the formula becomes,

S = 2π

∫ b

a
y
√

1 + g′(y)2dy.
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Problem 3.0.3. Find the surface area of the solid obtained by rotating y = 3
√
x, 1 ≤ y ≤ 2 about

y-axis.
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Solution: Given curve is x = y3, 1 ≤ y ≤ 2. By the given formula,

S = 2π

∫ 2

y=1
y3

√
1 + (

dx

dy
)2dy = 2π

∫ 2

1
y3
√

1 + 9y4dy

=
2π

36

∫ 2

1
36y3

√
1 + 9y4dy =

π

27
(1 + 9y4)3/22

y=1 =
π

27
(1453/2 − 103/2)

Problem 3.0.4. Find the surface area and volume of the solid generated by infinite curve

y = 1
x , x ≥ 1. Interpret the result.

Solution: The surface area and volume are given by

S = 2π

∫ ∞
1

1

x

√
1 +

1

x4
dx, V = π

∫ ∞
1

1

x2
dx

It is easy to see that the integral in S diverges. Indeed,∫ b

1

1

x

√
1 +

1

x4
dx >

∫ b

1

1

x
dx.

However, the integral for V converges. This is sometimes described as a can that does not hold

enough paint to cover its own interior. Of course, a finite amount of paint cannot cover infinite

surface. But if we fill the can with finite amount of paint we will have covered an infinite surface.

This is known as Painter’s paradox.
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